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Abstract

Future air traffic management (ATM) decision
support tools (DST) rely upon trajectory
forecasting to adequately deliver benefits.  These
forecasts are subject to errors from a variety of
sources.  As the number and sophistication of
ATM DST capabilities grow, the interoperability
between DST will become more sensitive to the
magnitude and variation in trajectory
forecasting errors across DST.  This paper
presents a parametric analysis of some of the
larger error sources.  Errors are considered due
to turn dynamics, weight, wind gradient
omission, speed intent, interim altitudes, top of
descent placement, and wind for typical
airborne flights. Estimates of error contributions
to typical scenarios are presented as a function
of phase of flight.  While certain errors are
isolated as having larger impacts on the typical
scenario, all error sources considered may have
significant impact on trajectory forecasting
under specific circumstances.

1  Introduction

In the quest to modernize our national airspace
system (NAS) to reduce congestion and delays,
the Federal Aviation Administration must
develop, deploy, and maintain new Decision
Support Tool (DST) automation. The goal of
such automation is to help controllers manage
greater levels of traffic safely, efficiently, and
with greater productivity. The FAA, with
assistance from the National Aeronautics and
Space Administration (NASA), has been
successful in deploying the first phase of “free
flight” DSTs to a subset of our nation’s Air
Traffic Control (ATC) facilities.  Although each
of these tools provides a valuable benefit to a

unique region of airspace (e.g., terminal, en
route) and type of operations (i.e., local control,
local TFM, national TFM, collaborative decision
making), they all share one aspect in common,
trajectory modeling. Each tool, in one form or
another, must generate its advisories based on
the prediction and analysis of four-dimensional
(4D) trajectories for each flight operating within
its airspace domain.

Although each new FAA DST must generate a
return on investment for deployment and
maintenance, an issue arises with the large-scale
success of many DST capabilities. Each tool
developed to date has also had to develop its
own trajectory modeling capability. This
independent development approach leads to
overlapping efforts with some duplication across
DST projects. Furthermore, differences in
requirements and approach, when combined
with a lack of standardization, lead to subtle and
sometimes major differences in software and
architectural implementation of trajectory
modeling functions. As a result of these
differences, two issues arise regarding the
precision (i.e., interoperability) across DST, and
the cost of development, deployment, and
maintenance of a diverse set of systems
performing a similar function.

First, differences across DSTs could potentially
lead to situations where controllers and/or traffic
managers receive slightly different values for the
same parameter for the same flight. Such
differences may be due to differences in the
level of modeling fidelity, input data, and update
rates. Setting aside the issue of trajectory
prediction accuracy, this issue is one of precision
between different DST. For example, a conflict-
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probe tool may indicate that a flight will arrive
at a fix at one time, and a separate flow-metering
DST may indicate a slightly different time. In
many cases, such differences may be entirely
innocuous. However, such differences may lead
to interoperability differences that are
unacceptable for more advanced applications.

The second issue has primarily to do with the
operation and maintenance of an operational
DST. In many cases, the initial innovation
represents only a fraction of the total life-cycle
cost of an advanced automation system. When
one considers that each DST is typically
deployed to many ATC facilities (up to 20 en
route Centers and many more terminal approach
controls), it becomes clear how the cost of
developing and deploying a trajectory modeling
function for each tool is magnified by the
number of installations (throughout the nation)
that must be installed, monitored, and
maintained. Differences in trajectory modelers
require duplicative efforts to develop, parallel
efforts to train facility-support personnel, and a
greater number of support personnel to service
the diverse set of DST systems.

Common trajectory modeling (TJM) refers to a
capability to provide common “services” to
subscribing DST.  Prior efforts [1,2] provide a
detailed description of the potential levels of
common TJM services.  They also define a
research and development approach for
assessing and down-selecting the type of
common TJM services and their implementation.
Many prior efforts [3,4,5] have identified the
impact of modeling and input errors on
performance of specific trajectory modelers or
decision support tools.  However, one must
recognize that these input errors are not static.
For example, future information exchange
between the airspace users and ATSP may
improve the ATSP’s knowledge of aircraft
weight for estimating climb and descent profiles.
As the magnitude and frequency of these input
errors evolve, so does the relative importance of
each error source.  This paper presents a
parametric analysis of some of these error

sources allowing a future user to estimate the
relative contribution due to each error source.
We also apply estimates of these errors to a
scenario day to provide an assessment of error
contributions under today’s operational
environment.

2 Trajectory Forecasting Errors

As part of the development of a research plan for
investigating common trajectory modeling, a
joint FAA-NASA-MITRE effort catalogued the
specific modeling “factors” contributing to
modeling errors.  Each factor represented an
element of a model (e.g., inclusion of turn
dynamics), or an input error (e.g., improper
route amendments, uncertainty in winds).  These
factors were subsequently categorized
qualitatively according to the group’s
expectation of error magnitude (high-medium-
low), frequency of error (frequent or rare), and
time horizon within which the FAA could
develop mechanisms for coping with the
uncertainty.  For example, the inclusion of turn
dynamics could be accomplished within TJM
functions with relative ease, but improvements
in pilot intent require the ability to obtain the
information from the flight deck to a trajectory
modeler.  Identified errors are described in [6].

In this paper, we focus on some of the higher
impact errors (either high due to impact or
frequency) that can be quantitatively analyzed.
Specifically, we discuss and estimate the impact
of the following factors:

• Inclusion of turn dynamics in the trajectory
modeler.

• Error in aircraft weight estimate.
• Omission of wind gradient term in modeler.
• Error in speed intent.
• Interim altitude levels on climb and descent.
• Error in placement of top of descent.
• Error in estimates of wind.
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3 Results

Two types of results are presented in this
section: parametric analyses, and averaged
results across a scenario day.  The parametric
analyses are sensitivity studies intended to
illustrate the impact of a single factor on
trajectory uncertainty as the impact level of that
factor is increased.  For example, the impact of
weight on accuracy during climb is reported as
the weight error is increased.  Averaged results
across a scenario day represent the standard
errors that are expected in trajectory forecasting
when subject to errors on input representative of
today’s operations.  The averaged results include
the effect of the error on a collection of flights
subject to a variety of different conditions and
parameters (e.g., winds, aircraft type, flight
profile, cruise level, initial weight).

This report presents the trajectory uncertainty
during the en route portion of flight (defined
here as that portion above 10,000 feet).  We
further subdivide the en route portion into three
distinct phases: climb, cruise and descent.

Trajectory uncertainty is defined in terms of
three separate components: along-track, altitude
and cross-track.  Errors are obtained by defining
a vector between the “truth” trajectory and the
predicted trajectory.  This vector is projected
into a component in the vertical direction
(altitude error), an along-track component in the
direction of the “truth” velocity vector, and a
cross-track component in the horizontal plane
normal to the truth velocity vector.

3.1 Turns

Certain trajectory forecasting tools assume
instantaneous turns rather than modeling the
dynamics of the turn.  We estimate the impact of
this omission by comparing trajectories with a
simple turn model to trajectories assuming a
discrete heading change at a waypoint.  This
error represents the error of exclusion of the turn
model and does not attempt to represent errors
introduced in the execution of the turn by a pilot
(described in [5]).  Our parametric analysis

assumes a turn model, representing truth, with
constant airspeed, a maximum bank angle of 25
degrees, no winds and the bank angle is
achieved instantaneously.

Figure 1 shows the turn model employed.   The
along-track error and maximum cross-track
errors are respectively given by:
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Figure 2 illustrates the effect of airspeed and
heading change on the maximum cross-track and
along track error in a turn. (e.g., An error of
8557 ft. along track and 9270 ft. across track can
be experienced by a flight at 400 kts
encountering an 80-degree heading change.)

A different turn model was used to obtain the
impact of turns on a scenario.  This turn model
incorporated the effect of winds on the turn and
assumed a standard rate turn with a bank angle
limited to a maximum of 25 degrees. The wind
was assumed to be a constant during the turn.
An entire day’s worth of flight plans and actual
tracks were obtained, and the errors introduced
by modeling instantaneous turns were
investigated.  Figure 3 shows the distribution of
maximum cross-track errors for both types of
scenarios.  The average maximum cross-track
error (averaged across all turns) is 1711 feet.
Figure 4 illustrates the along-track standard error
during all en route phases of flight based upon
actual turn data.  Note that turns in a terminal
environment would likely be larger and more
frequent.

3.2 Weight Error

We estimated the impact of a percentage error in
aircraft weight during both climb and descent.
For the parametric analysis, we assume an
aircraft initially accelerating from 250 knots to a
climb calibrated airspeed (CAS) at a climb rate
of 2000 feet per minute, the aircraft then climbs
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using a constant CAS and constant Mach
number segment.  Upon descent, the process is
reversed.

As an illustration of the impact of weight on the
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(The dV/dh term is obtained by holding either
Mach or CAS constant).  During climb, the
thrust (T) term dominates over the drag terms
and we see that the climb rate would be
dominated by a term inversely proportional to
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impact of the weight on descent rate will depend
on whether the induced drag term (kW)
dominates.  Thus, for certain aircraft, weight
errors will yield almost no error in altitude on
descent (e.g., see [4]).

We applied variations in weight of 5 and 10%
above and below a nominal weight of 100000
lbs to a B737-300 aircraft model climbing to
33000 feet.  No wind was used for the
parametric analysis, but an ISA atmosphere was
assumed for the temperatures.  Figures 5 and 6
illustrate the altitude and along-track errors
experienced by the flight during the climb.
During the Mach segment, true airspeed
decreases as altitude increases.  The reverse is
true during the CAS segment.  Thus, the along-
track error tends to peak around transition.

Using a sample of flights across the NAS, we
calculated the climb and descent profiles at
nominal weights, and compared them to climb
profiles with an additional weight uncertainty
expressed as a percentage error.  This error was
drawn from a normal distribution with zero
mean and variance of 5% to be consistent with

[7].  (Assuming that weight biases in [7] could
be removed.)  For descent profiles, we assumed
the same percentage weight error.  Figure 7
shows the standard error encountered both along
track and in altitude during climb.  The altitude
error peaks at 763 feet decreasing to zero as the
cruise altitude is reached.  The along track error
grows to a constant 0.41 nautical miles.

3.3 Wind Gradient Omission

Many tools seeking to forecast trajectories
include the effect of winds on climb and descent,
but neglect the effect of the wind gradient term.
This term is best illustrated by an example.
Consider a flight subject to a tailwind (w)
monotonically increasing as a function of
�������
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An increase in the wind gradient (dw/dh) will
result in a decrease in the climb rate.  This result
can be observed in Figures 8 and 9.  Linear wind
gradients were imposed assuming wind speeds
of up to 100 knots at 33000 feet.  In these
figures, a positive number implies a tailwind.
The lack of symmetry in the along-track error is
the result of competing effects.  When subject to
a headwind, neglecting the gradient places the
estimated flight below the actual flight.  This
results in a lower headwind at the lower altitude
(increasing the ground speed).  The lower
altitude also results in a lower true airspeed for
constant CAS.  However, as the flight climbs
into the constant Mach regime, the lower altitude
results in a higher airspeed.  At lower altitudes,
the effect of constant CAS dominates, thus the
estimated flight lags behind the actual.  At
higher altitude, the wind effect dominates over
the Mach number effect.  The estimated flight
then begins to catch up.  When subject to a
tailwind, the dominant effect always results in a
faster estimated flight.
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3.4 Speed Intent

Constant speed intent errors do not lead to a
bounded error. These errors integrate into
increasing positional uncertainty. We investigate
the impact of speed uncertainty in climb and
descent by applying a constant percentage error
in speed to the climb and descent CAS and
Mach.  From [7] we estimate a speed error of
approximately +/-5% in both climb CAS and
Mach number.  This assumes an error stemming
from the observed variance in pilot-discretionary
speed profile for cases where the DST is
attempting to guess a flight’s planned speed
versus providing a speed advisory.  On descent,
an error of 5.5% was imposed.  During descent,
the along-track error does not continue to
increase since all flight trajectories are bound by
the 250 kt (CAS) restriction below 10,000 feet.

When applied to the climb scenario, the along-
track standard error grows at 5.3 knots. During
descent, the error peaks at 3.1 nmi.  Altitude
errors peak at 212 feet in climb and 2920 feet in
descent.

3.5 Interim Altitudes

One additional source of trajectory uncertainty
involves the practice of aircraft flying level at
altitudes other than their cruise altitude.  This
can occur for a variety of reasons:
• transitioning aircraft will encounter a

conflict that is averted by remaining at an
interim altitude,

• an interim altitude is provided to a
transitioning flight and the controller does
not provide a continuing clearance until the
aircraft has leveled off

• a procedure is in place with a specified
altitude restriction

• a flight conducts a “step-climb” to a new
cruise-level

• a flight requests a new altitude to avoid
turbulence.

We estimated the frequency with which flights
encounter a “level-off” altitude during climb by
looking at a sample of 3966 climbing flights in a

scenario day.  A total of 28% of these climbing
flights were subject to interim altitudes with a
level-off altitude distribution, and duration as
shown in Figure 10.  Note that longer durations
tended to be associated with level-offs at higher
altitudes due to step climbs.

The impact of these level-offs on trajectory
uncertainty was estimated by assuming that none
of the level-offs were predicted to occur when
the trajectory forecast was made.  (Although,
some of these, based on restrictions, would be
known.)  Figure 11 illustrates the impact of these
level-offs on climb.  During climb, level-offs
will always place the flight path below forecast,
resulting in the average peak altitude error of
280 feet.  At one sigma, the peak altitude error is
1418 feet.

The above approach assumes that interim
altitudes are not known prior to conducting
trajectory forecasts.   However [8] found that
when dealing with the input of altitude
clearances into automation, “almost all altitude
clearances were correlated to a flight plan
amendment or interim altitude message”.  Thus,
at some point prior to the level-off, the altitude
of the level-off would be known to the
automation either through amendments, or
through restrictions.  We analyzed the errors by
assuming that the level-off altitude was known,
but the duration was assumed to be the mean.  In
this case, knowing the level-off altitude lowers
the peak altitude error from about 1400 feet to
900 feet.

3.6 Top of Descent

One error occurring only in descent involves the
placement of the top of descent (TOD) point.  A
delay in the placement of top of descent will
result in a flight significantly above the
forecasted profile.  Some trajectory prediction
algorithms will integrate backwards from bottom
of descent, for these algorithms, one can
approximate the error as a scaled error in the
placement of the bottom of descent.
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We estimated the error in TOD placement by
first looking at the variance in the top-of-descent
based upon observed flight data. We calculated
the variance by grouping flights by arrival
airports and corner posts.  This approach sought
to eliminate regional variation in TOD
placement.  Based upon these observations, we
found a variance of 28 nautical miles in the TOD
placement.  We estimated this error by imposing
a normally distributed error in TOD with a
variance of 28 nautical miles.

Note that an error of 28 nautical miles on TOD
represents the error encountered under current
operations by a decision support system without
imposing changes in descent procedures.  When
these assumptions are relaxed, [9] showed that a
mean error of 1.2 nautical miles could be
obtained in TOD placement for non-FMS
equipped aircraft (assuming a TOD advisory is
issued).  Given accurate wind, performance, and
speed-profile data, [9] showed the error could be
reduced to 2.4 nautical miles for FMS aircraft
without requiring advisories.

3.7 Wind

Unlike some of the errors reported previously,
errors in forecasting the wind can be represented
by a vector field, rather than a point value.
However, much of the literature reports wind
prediction accuracy in terms of aggregate rms
statistics (see [10] for a discussion on these
problems) which hides localized wind errors that
are on a scale of relevance to conflict probe
applications (e.g. 20 mins). Furthermore, the
impact of wind errors on trajectory uncertainty
depends on the spectral characteristics of the
wind estimation error.  Wind uncertainty also
depends on the forecast being used (e.g., RUC-1,
RUC-2)[11] or if the forecast was augmented
with updates from airborne data (e.g., [12]).

We present here a parametric analysis of wind
uncertainty in climb and in descent, assuming a
wind bias error corresponding to rms values
typically reported in the literature.  A bias error
is used since one would expect errors resulting
from time varying wind signals to have a smaller

impact on trajectories than the effect of a
constant wind bias.  The magnitude of the wind
bias was obtained from [10,11,12] with rms
values ranging from 7 to 20 knots.

Along-track error grows monotonically with the
speed error.  The altitude error is zero when
expressed as a function of time since the aircraft
continues to climb at the same rate in an air-
fixed frame of reference.  Note that if altitude
restrictions are in place, a coupling between
along-track and altitude will result in altitude
errors due to along-track errors.

We obtained the impact of the wind error on a
scenario day by applying a wind error to each
flight in our climb and descent scenarios.  The
wind error was obtained by sampling from a
distribution using the cumulative probability
density function shown in [10].  This wind bias
produced along-track errors growing at 10 kts.

3.8 Lateral Deviations not Amended

One effect that we did not calculate in this
report, is the impact of route deviations for
which amendments were not entered into the
automation system.  Through a voice tape
analysis, [8] determined that only 18% of route
clearances are entered into the automation as
route amendment messages. While this number
is based on a limited data set, the impact of
errors in the lateral route were investigated in
[3,7].  The former study revealed a mean error of
2.46, 1.09, and 6.06 nautical miles for
departures, over-flights and arrivals.  Standard
deviations for the same scenarios were 2.32,
1.48 and 5.51 nautical miles, respectively.

4 Summary

We summarize the results of the parametric
analysis in Table 1.  For each parametric
analysis, we obtained an error as a function of
forecast time (e.g., Figures 5,6,8,9). Table 1
reports the peak error occurring across all time.
For the turns, the cross-track error is reported in
column 4.  For some of the factors (e.g., wind
bias), the along-track error continues to grow at
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a particular rate and does not peak.  For these
errors, the growth rate in the error is reported in
knots.  The level-off error depends on both the
magnitude of the level-off and the altitude of the
interim altitude.  For this table, we considered
interim altitudes at 15,000 feet.

Table 1. Parametric analysis, peak errors.

Factor
Input

Parameter
Along-track

(nmi)

Cross-
Track or
Alt. (ft) Phase*

20° 0.02 592 (2)
45° 0.27 3165 (2)

Turns

90° 2.71 15912 (2)
10% -0.92 -2206
5% -0.46 -1137
-5% 0.44 1183

Weight

-10% 0.39 2385

(1)

10% 1.05 1104
5% 0.57 594
-5% -0.62 -661
-10% -1.29 -1372

(3)

100 kts 0.79 1253
50 kts 0.31 649
-50 kts -0.18 -698

Wind
Gradient

-100 kts -0.24 -1424

(1)

100 kts -2.40 -1804
50 kts -0.99 -934
-50 kts 0.57 965
-100 kts 0.72 1927

(3)

5% 16 kt 595Speed
-5% 17 kt -1061

(1)

5.5% 2.54 -5558
-5.5% -4.71 3953

(3)

25 nmi 9.5 9660
5 nmi 1.9 2213
-5 nmi -1.9 -2215

TOD Error

-25 nmi -9.5 -9620

(3)

Wind Bias w kts w kt - All
1 min 1.3 2180Level-off
5 min 6.5 4940

(3)

1 min 1.5 3352
5 min 5.3 10310

(1)

*(1) Climb, (2) Cruise,(3) Descent

Table 2 summarizes the results of the application
of errors to our scenarios (e.g., Figures 4,7).
Each error in the table represents the peak in the
standard error time series.  In certain cases for

which the mean was sufficiently large, we also
report the mean in brackets.

The results presented in Table 2 allow one to
make conclusions regarding the investigated
errors for the impact on average errors only.
Clearly, for all cases, biases in wind represent a
growing uncertainty, however, by setting the
look-ahead horizon, the error can be estimated.
A 20-minute look-ahead horizon yields a 3.3
nautical mile error due to this factor.  The
relative importance of this error can be assessed
by considering that flights are usually required
to be separated by 5 nautical miles laterally and
1000 feet vertically (2000 above FL290).

Table 2 Estimate of Peak Standard Errors [and
means]

Factor Along-
track

Cross track
or altitude

Condition

.68 [.34] Climb

.44 [.13] Cruise
Actual
Turns

.42 [.13]
2515

Descent
.41 763 ClimbWeight
1.0 620 Descent
0.13 239 ClimbWind

Gradient 1.56 454 Descent
5.3 kts 212 ClimbSpeed

Error 3.11 2920 Descent
2.8 kts

 [0.18 kts]
1418
[280]

ClimbLevel-offs

8.44 2769 Descent
TOD

(28 nmi)
9.4 7050 Descent

TOD
(1.2 nmi)

0.38 444 Descent

Wind bias 10 kts - All

On descent, improvements in top-of-descent,
wind uncertainty, speed intent and altitude intent
data will provide the largest reduction (of the
factors considered) in typical altitude and along-
track errors.  During climb, reductions in altitude
intent and weight uncertainty will provide the
best improvements in altitude error, whereas,
better wind prediction and speed intent will
provide the best reduction in along-track error.

Depending on the DST, consideration of the
average errors may yield unacceptable trajectory
forecasting errors.  For conflict-probe
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applications, Table 1 reveals that almost all
factors have certain circumstances under which
the errors may be considered large compared to
the 5 nm lateral and 1000 ft vertical separation
requirements.

For applications involving turn advisories, turns
may have a significant cumulative effect on
along-track error.  Neglecting turn dynamics
may provide palatable errors on average, but for
a flight with large turns for metering and
spacing, the error would become unacceptable.

While the effect of the wind gradient did not
figure prominently in the average, large wind
gradients would affect all flights in a
geographical location.  Thus, a large wind
gradient over a hub airport would contribute
significantly to trajectory forecast errors to
almost all climbing and descending flights into
and out of that hub.

Some errors can be addressed by improving the
flow of information between humans and
automation, or by defining procedures.  An
example is provided in  [9] whereby procedures
and/or data can be used to significantly reduce
the top of descent uncertainty from the large
errors reported herein to the value shown as the
second TOD row of Table 2.

5 Conclusions

As future technologies deploy within the NAS,
information currently unavailable will become
more readily obtainable by trajectory forecasters.
Thus the magnitude of the errors reported in
Table 2 will evolve as the NAS modernizes.
Furthermore, trajectory forecasting requirements
will depend on the DST application.  By
analyzing future DST for trajectory forecasting
requirements as a function of the anticipated
level of fidelity of all the input factors,
requirements for a common trajectory modeler
can begin to be developed.

We have presented a parametric analysis of the
impact of various trajectory forecasting error
sources.  We have applied error analysis to a

sample collection of flights under various
climbing, cruising and descending scenarios.
Although this study does not comprehensively
analyze all factors, a comparison of the data
presented indicates that the pacing factor for
trajectory forecasts depends on the DST
application of interest and operational scenario
to be considered.  For this reason, attaining the
goal of “common” trajectory modeling will, at a
minimum, require the consideration of all errors
presented herein.
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Figure 1. Simple turn model (φ = bank angle).
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Figure 2. Turn omission error.
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Figure 3. Maximum Cross-track error
distribution due to turn omission for flight plans

and actual flights.
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Figure 4. Along-track errors due to turn
omission (mean plus one sigma) using actual

turn distributions.
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Figure 5. Altitude error due to weight error.
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Figure 6. Along-track error due to weight error.
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Figure 7. Scenario errors due to weight in climb.
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Figure 8. Altitude errors due to gradient
omission.
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Figure 9. Along-track errors due to gradient
omission.
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Figure 10.  Level off altitude histogram and
cumulative duration distribution.
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Figure 11. Standard errors due to level-offs.
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